

COOLING SYSTEMS Needs and Applications

>> Chiller

- >> Once through
- >> Evaporative : cooling water, water + glycol ; condensing refrigerants
 > Adiabatic : cooling water, water + glycol ; condensing refrigerants
- >> Air : cooling water, water + glycol

Evaporative System

Chiller

>> «Mechanical» cooling, compressor / evaporator => low temperatures but high energy consumption.

>> Some processes require very low temperatures (below 20/25 ° C).

>> Possibility of free-cooling with an evaporative tower to reduce chiller operation during the year.

>> "Old style solution"

>> This solution consists in **taking water directly from natural sources**, rivers, lakes, wells - sending it to an exchanger and then returning it to the environment

Throwaway Water

>> Advantages:

- □ No noise
- Low energy consumption
- □ Low-temperature water availability

>> Disadvantages:

- □ High water consumption
- Limits of use (regulations) / excessive loads to the area water treatment plant
- □ Irregular loads
- □ Plant dirtying (with river or well water use)

Cooling Tower (Evaporative System)

Evaporative System

>> Advantages

- □ Solution for small, medium and large capacities.
- **Given Structure** Efficiency through the whole year.
- □ Fluid temperature lower than air temperature up to 10°C (+2°C above wet bulb)
 - ✓ Low energy consumption
 - ✓ Reduced footprint

>> Disadvantages

- □ Water consumption.
 - ✓ More careful system management.

Adiabatic Cooler and Condenser

Adiabatic System

>> Advantages

- □ Solution for small and medium capacities.
- Efficiency through the whole year ; water is used only if necessary.
- □ Fluid temperature lower than air temperature up to 4 / 5 °C.
- Extremely low water consumption.

>> Disadvantages

- Wider footprint compared to evaporative systems.
- Higher start-up costs compared to evaporative systems.

Air Cooler

>> Usually consisting of:

- □ Multi-fan systems.
- Horizontal or vertical finned coils.

>> Advantages

- □ Simple solution, generally for small and medium capacities.
- Efficiency during winter (cold months).
- □ No water consumption (for 100% air cooled systems).

>> Disadvantages

- Fluid temperature higher than the outside air temperature.
- □ Very high energy consumption.
- □ Efficiency decreases in the mid and hot season.
- High footprint.

11

Air System

What should I choose = What am I looking for ?

- > Water savings
- Energy savings
- "Green" refrigerants
- Return on investments (ROI) focus
- > Noise

What should I choose ?

COMPARING COOLING TECHNOLOGIES					
Focus	Air	Adiabatica	Hybrid	Evaporative	Mechanical (chiller)
Electric kW/thermal kW	X	XX	ХХХ	XXX	X
Size/power limit	X	XX	XX	XXX	X
Output temperature limit	X	XX	XXX	XXX	XXX
Footprint	X	XX	XX	XXX	XXXX
System complexity	XX	X	X	XX	XX
Water savings	XXX	XX	XX	X	XXX
Easy maintenance	XXX	XX	XX	XX	XX
Efficiency	X	XX	XXX	XXX	XX
Expected life cycle	XXX	XXX	XXX	XXX	XX
Equipment cost	XX	XX	XX	XXX	X
Applicability to different sectors	X	XX	XXX	XXX	XX

Applications

Sectors

Main Application

□ Steelworks and metal production generically

- Dever generation plants
- Chemical and pharmaceutical plants
- □ Food & beverage industries
- □ Air conditioning plants (supermarkets, hospitals, exhibition centers)
- □ Technical gas production plants
- **Engine test benches**
- □ Air compressors
- □ Vapor condensers
- Dry cleaners and tanneries
- Depart Paper mills
- Plastic processing
- □ Snowmaking plants

www.mitacoolingtechnologies.com

MITA Cooling Technologies S.r.l. Via del Benessere, 13 - 27010 Siziano (PV) - Italy Ph. +39 0382 67599 - Fax +39 0382 617640 - info@mitact.it